Model identification of linear parameter varying aircraft systems , Report no. LiTH-ISY-R-2789

نویسندگان

  • Atsushi Fujimori
  • Lennart Ljung
چکیده

This article presents parameter estimation of continuous-time polytopic models for a linear parameter varying (LPV) system. The prediction error method of linear time invariant (LTI) models is modi ed for polytopic models. The modi ed prediction error method is applied to an LPV aircraft system whose varying parameter is the ight velocity and model parameters are the stability and control derivatives (SCDs). In an identi cation simulation, the polytopic model is more suitable for expressing the behaviours of the LPV aircraft than the LTI model regarding time and frequency responses. The SCDs of the initial polytopic model are adjusted to t the model output dta obtained from the LPV aircraft system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approaches to Identification of Nonlinear Systems, Report no. LiTH-ISY-R-2991

System Identi cation for linear systems and models is a well established and mature topic. Identifying nonlinear models is a much more rich and demanding problem area. In this presentation some major approaches and concepts for that are outlined

متن کامل

LTV Model Reductions with Upper Error Bounds, Report no. LiTH-ISY-R-2725

An approach for computing upper error bounds for reduced-order models of linear time-varying systems is presented. It is based on a transformation technique of the Hankel singular values using positive-real, odd incremented functions. By applying such time-varying functions, the singular values to be removed can be forced to become equal and constant, so that they can be reduced in one step. Tw...

متن کامل

Identification of Hammerstein Systems Using Separable Random Multisines, Report no. LiTH-ISY-R-2722

The choice of input signal is very important in identification of nonlinear systems. In this paper, it is shown that random multisines with a flat amplitude spectrum are separable. The separability property means that certain conditional expectations are linear and it implies that random multisines easily can be used to obtain accurate estimates of the linear time-invariant part of a Hammerstei...

متن کامل

Time-Varying Parameter Estimation under Stochastic Perturbations Using LSM, Report no. LiTH-ISY-R-3019

In this paper, we deal with the problem of continuous-time timevarying parameter estimation in stochastic systems, under 3 different kinds of stochastic perturbations: additive and multiplicative white noise, and colored noise. The proposed algorithm is based on the Least Squares Method with forgetting factor. Some numerical examples illustrate the effectiveness of the proposed algorithm. An an...

متن کامل

Segmentation of ARX-models Using Sum-of-Norms Regularization, Report no. LiTH-ISY-R-2941

Segmentation of time-varying systems and signals into models whose parameters are piecewise constant in time is an important and well studied problem. It is here formulated as a least-squares problem with sum-ofnorms regularization over the state parameter jumps, a generalization of `1-regularization. A nice property of the suggested formulation is that it only has one tuning parameter, the reg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007